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Calculations for the field at the focal plane of a high numerical aperture lens focusing a circularly
polarized plane wave are presented. The calculations show that the polarization of the wave front in
the focal plane is space varying, and that a geometrical phase is added to the wave front. Calculation
of the angular momentum at the focal plane reveals that it depends on the numerical aperture of the
lens. It is shown that this dependence is directly connected to the lens acting as a spatial filter.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2402909�

The focusing of light through high numerical aperture
�NA� lenses has been the topic of much research.1–3 Under-
standing how tightly focused beams propagate is important
for a variety of applications such as microscopy3 and optical
tweezing.4 A particularly interesting aspect of the studies is
how optical beams carrying angular momentum5 behave
when they are focused through high NA lenses. Such beams
have many practical applications as they can be used to ap-
ply torque to small particles, making them useful for studies
in a variety of fields such as cell mechanics.6

In the paraxial regime the angular momentum of a beam
is the sum of two components: orbital angular momentum l,
which is associated with the spiral phase of the beam, and
intrinsic angular momentum or helicity �, which is associ-
ated with the polarization of the beam �±1 for circular polar-
ization�. Although much research has been done on how an-
gular momentum is manifested in nonparaxial beams �see
Ref. 5 for a review�, little work has been done on the specific
topic of angular momentum in tightly focused beams. This
study attempts to shed light on how angular momentum is
manifested in such beams.

According to the classical paper by Richards and Wolf7

the electric field E in the focal plane of an aplanatic lens,
when a linearly polarized point source located at infinity is
stigmatically imaged, by a lens with focal length f is

E = �ex

ey

ez
� = �− iA�I0 + I2 cos�2���

− iAI2 sin�2��
− 2AI1 cos �

� , �1�

where

I0��� = �
0

k sin �

F0���J0����exp�i�k2 − �2z�d� , �2a�

I1��� = �
0

k sin �

F1���J1����exp�i�k2 − �2z�d� , �2b�

I2��� = �
0

sin �

F2���J2����exp�i�k2 − �2z�d� . �2c�

In Eqs. �1� and �2� k represents the wave number, sin � is the
NA, �=k sin �0 is the spatial frequency with �0 representing
the angle between the corresponding rays in the image space
and the optical axis. � ,� ,z represent coordinates in a cylin-
drical frame of reference originating at the focal spot, and
with the z axis oriented along the optical axis. Furthermore,
the exact forms of F0−F2 can be found in Ref. 7. Figure 1
illustrates the geometry and the definitions mentioned above.

Circularly polarized light is simply the superposition of
two orthogonally linearly polarized beams with a retardation
of � /4 between them. Thus the field in the image space
when the incident beam is circularly polarized can be calcu-
lated by adding the field for an incident polarized in the x
direction �Eq. �1�� with the field calculated for a beam polar-
ized in the y direction, which is retarded by � /4.

a�Electronic mail: zbomzon@groupwise.swin.edu.au
FIG. 1. Illustration showing the geometry of the system and definitions of
the various coordinates.
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Ecirc = �ex + iex�

ey + iey�

ez + iez�
� = �− iA�I0 + I2 exp�i2���

A�I0 − I2 exp�i2���
− 2AI1 exp�i��

� . �3�

In order to derive Eq. �3� the field for the component polar-
ized in the y direction was found by rotating the fields given
in Eq. �1� by � /2 and inserting into the solution
�=��−� /2, where �� is the azimuthal coordinate in the
rotated field.

Figure 2�a� shows the electric energy density,
we= �1/16���E ·E*�, at the focus of a lens with a NA of 0.95
when the incident beam is circularly polarized. The energy
distribution possesses a circular symmetry, in contrast to the
asymmetric distribution observed when linearly polarized
light is focused with this lens as shown in Fig. 2�b�.

Focusing a beam through a high NA lens causes
depolarization.8 Therefore it is interesting to examine the po-
larization of the wave front in the focal plane. This can be
done by calculating the Stokes parameters9 of the field at
each point, from which the azimuthal angle � and the ellip-
ticity tan 	 can be found.

tan 2� = tan�2� sgn�I0I2�� , �4a�

sin 2	 = �I0 − I2�/�I0 + I2� . �4b�

Figure 3 shows �a� a cross section of the ellipticity as well as
�b� the azimuthal angle of the local polarization ellipses and
�c� the intensity of the transverse electric field at the focus of
a lens with NA=0.95. The polarization is space varying. Al-
though the wave front at the focal point is circularly polar-
ized, the ellipticity drops sharply close to the first intensity
minima, where it changes from the original left hand polar-
ization to right hand polarization. The azimuthal angle is
either radially or azimuthally oriented, depending on the dis-
tance of the point at which it is measured from the center. In
the main lobe the orientation is radial; however, as the ellip-
ticity changes signs �this corresponds to a change in the
handedness of the polarization�, the azimuthal angle switches
from radial to azimuthal. It should be noted that at the
boundaries of these changes, the polarization is circular, and
the azimuthal angle is undefined. These boundaries are in
fact polarization singularities.10,11

The phase of a beam with space-variant polarization can
be calculated using Pancharatnam’s definition for phase,12


p=arg	E�r1� ,E�r2�
, where 	 
 denotes an inner product and
E�r1� and E�r2� are the electric fields at two different points
on the wave front. Calculating the phase between the trans-
verse components of the wave front at two points located on
the same circle around the focal spot yields


p = arg	E�r,0�,E�r,��
 = � − a tan� I0
2 − I2

2

I0
2 + I2

2 tan �� , �5�

which, by application of Eq. �4b�, yields,


p = � − a tan��sin 2	�tan �� , �6�

where 	 is the ellipticity of E�r ,0� and E�r ,��. Thus, the
beam seems to possess a spiral phase, which suggests that it
possesses orbital angular momentum. However, the paraxial
definition of orbital angular momentum does not hold, be-
cause the value of l depends on the closed circuit along
which integration is performed. Hence, the distinction be-
tween intrinsic angular momentum is blurred as expected in
the nonparaxial regime.5,13 Note that both E�r ,0� and E�r ,��
have the same ellipticity as they are both situated on the
same circle centered around the focal point �see Fig. 3�a��.

The distinction between orbital angular momentum and
intrinsic angular momentum can be retrieved to some extent
if the beam in the focal plane is decomposed into two com-
ponents, each possessing uniform circular polarization of op-
posite helicity, so that Eq. �2a� takes on the form

FIG. 2. �a� Electric energy at the focus of a lens with a NA of 0.95, when the
incident beam is circularly polarized and �b� linearly polarized.

FIG. 3. Transverse polarization when a circularly polarized beam is focused
through a lens with NA=0.95. �a� A cross section of the ellipticity of the
beam, �b� the azimuthal angle, and �c� the intensity of the transverse field.
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E = − iA� 1

i

ez1
�I0��� + � 1

− i

ez2
�I2���exp�i2��� , �7�

where ez1 and ez2 are the respective components in the z
direction. The first component in Eq. �7� has helicity of
�=1 and orbital angular momentum l=0, whereas the sec-
ond component has helicity �=−1 and orbital angular mo-
mentum l=2. The first component has the same polarization
as the beam in the object space, and has undergone no phase
modification. On the other hand, the polarization of the sec-
ond component has been reversed, and it has gained a spiral
phase with topological charge l=2. In the paraxial approxi-
mation, the angular momentum of a beam per unit energy is
proportional to l+�.5 For each of the components in Eq. �7�
l+�=1, which is equal to the value of l+� of the incident
circularly polarized beam. This suggests that through focus-
ing helicity has been converted into orbital angular
momentum.

By Fermat’s principle, the phase between the circularly
polarized plane wave at the entrance pupil to the focal plane
along all rays must be the same. Thus, the nonuniform phase
in the focal plane cannot result from the propagation of the
beam, and must be a geometrical phase that results from the
change in polarization that occurs at each point of the
beam.14 In fact it is possible to show that 
p, as calculated in
Eq. �5�, is equal to half the area of the geodesic triangle on
the Poincare sphere9 defined by the pole �circular polariza-
tion�, E�r , 0�, and E�r ,��. This suggests a strong connection
to the geometrical phase that is added to a beam when its
polarization traverses a closed loop on the Poincare sphere,9

indicating a strong connection between angular momentum
and geometrical phases as suggested in the past.15

As a final point of discussion, we examine the ratio be-
tween the total angular momentum along the optical axis Jz
and the energy of the beam W. To this end, the formula
suggested by Barnett and Allen for the ratio between angular
momentum and total energy of a nonparaxial beam is
utilized,13

Jz

W
=

�l + ��
�

+
�

�

�
0

k

d���E����2�/�k2 − �2��

�
0

k

d���E����2�2k2 − �2�/��k2 − �2��
,

�8�

where W and Jz are the total energy and angular momentum
along the optical axis, respectively and � is the frequency of
the wave. Equation �8� holds for beams with uniform polar-
ization in the transverse field. Therefore, in order to obtain
the ratio between the angular momentum and energy of the
entire beam, Eq. �8� is applied to each of the components in
Eq. �7� separately and then summed to yield Figure 4 shows
calculations of the total angular momentum-energy ratio
�Jz /W� in the image space as a function of the NA of the
lens. The ratio is almost constant when the NA is smaller
than 0.2, after which it monotonically increases until a value
of about 1.4 when the NA is 0.95. This presents an apparent
paradox, as the lens is invariant under rotation, and hence the
symmetry of the problem dictates the conservation of angu-
lar momentum.

To resolve this paradox we examine the angular momen-
tum of the field at the front aperture of the lens, assuming
that the point source is located at a distance S1 from the lens
along the optical axis. The field at the front aperture can be
found by substituting z=−S1, and �=k sin �i, where �i is the
angle between rays in the object space and the z axis, into
Eqs. �1� and �2�. Consequently, the angular momentum of the
beam in the object space is given by Eq. �8�, and is equal to
the angular momentum of the beam in the image space.

This analysis shows that the NA-depenendent increase in
angular momentum of the focused beam shown in
Fig. 4 is due to the lens acting as a low pass filter. The lens
only transmits spatial frequencies lower than
�cutoff=k�R /�s1

2+R2�, where R is the aperture of the lens. If
we assume that the focal length is kept constant, then �cutoff
increases with NA. By Eq. �8�, the high spatial frequencies
carry more angular momentum per unit energy than the low
spatial frequencies. Therefore increasing the aperture and
hence the NA will inevitably increase the amount of AM per
unit energy present in the focal region.
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FIG. 4. Angular momentum-energy ratio in the focal plane of the lens as a
function of its NA.
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